

Energy Materials: Meeting the Challenge

10th October 2008

Professor Peter P. Edwards *University of Oxford*

The Carbon Economy

G. Marbán and T. Valdés-Solís, International Journal of Hydrogen Energy, 2007, 32, 1625-1637

Hydrogen Economy

G. Marbán and T. Valdés-Solís, International Journal of Hydrogen Energy, 2007, 32, 1625-1637

a) oil b) natural gas c) wind d) solar e) biofuels f) all of the above

bn

The answer to the big question of how to secure future energy supplies isn't one of the above. It's all of the above. That's why, as the largest single producer of oil and gas in the UK North Sea, BP is using the latest technology to find new reserves and to increase recovery from existing fields. We are also investing in a major biofuels facility in Hull and expanding our global wind power generation and production of solar panels. It all adds up to a more dependable energy future. Learn more at bp.com

The Times, September 24th 2008

UK primary energy supply structure and the present and future position of UK energy mix

Materials UK Energy Review 2007

Energy Materials - Strategic Research Agenda

The Challenges and Opportunities of Hydrogen

Hydrogen Production

Sustainable Hydrogen, a European Perspective, Prof. Dr. J. Schoonman GCEP Hydrogen Conference, Stanford University, April 14-15, 2003

Hydrogen Production Challenges: Hydrogen from Fossil Fuels

marginal effect on energy challenges

CO₂ Capture and Storage

Ocean acidification due to increasing atmospheric carbon dioxide

Action needs to be taken now to reduce global emissions of CO₂ to the atmosphere to avoid the risk of large and irreversible damage to the oceans. We recommend that all possible approaches be considered to prevent CO₂ reaching the atmosphere. No option that can make a significant contribution should be dismissed.

Policy document 12/05

June 2005

ISBN 0 85403 617 2

This report can be found at www.royalsoc.ac.uk

excellence in science

Hydrogen Production Challenges: Hydrogen from H₂O Splitting

the H₂/water cycle

energy sources non-fossil electricity solar, hydro, wind, nuclear solar/nuclear heat fossil electricity/heat H₂ liberation electrolysis photo-electrolysis dissociation thermochemical cycle

H₂ conversion fuel cell: electricity/heat heat engine combustion

Water Splitting

The Challenges and Opportunities of Hydrogen

Hydrogen Storage

Hydrogen Storage Materials <u>The Key Technology Barrier</u>

Energy Production

Energy Storage

Energy Use

Hydrogen Storage: Gas and Liquid

gaseous storage

5000 psi = 350 bar

10000 psi = 700 bar fiber reinforced composite containers

liquid storage

standard in stationary applications portable cryogenics for auto 30-40% energy lost to liquifaction

within technological reach

Hydrogen Storage

Toyota Fuel Cell Hybrid Vehicle 70 Mpa (700 atmosphere) hydrogen tank Range 760 kilometers (472 miles), Cold Start -30° Celsius

Hydrogen to fuel this car for 400km; stored as compressed gas, cryogenic liquid and solid state stores

L. Schlapbach and A. Züttel, *Nature* **414** (2001), p. 353

Hydrogen and Fuel Cell Expo 2006 400 Exhibitors, 23,039 Professional Visitors

"There exists the necessity for an epoch-making advance in new materials for hydrogen storage.... This is the hardest challenge"

Masatami Takimoto Executive Vice President, Toyota Motor Corporation

Hydrogen Storage

Contraction of the second						
Liquid hydrogen	Cryo- adsorption	Interstitial metal hydride	Compressed hydrogen	Alanate	Salt-like metal hydride	Water
LH ₂	Activated carbon	Laves Phase Comp. / FeTiH _x / LaNi ₅ H _x	CGH ₂	NaAlH ₄	MgH ₂	H ₂ O
100 mat.wt.%	6.5 mat.wt.%	2 mat.wt.%	100 mat.wt.%	5.5 mat.wt.%	7.5 mat.wt.%	11 mat.wt.%
Operating temperature						
-253°C	> -200°C	0 - 30°C	25°C	70 - 170°C	330°C	>> 1000°C
Corresponding energy to release hydrogen in MJ per kg H ₂						
0.45	3.5	15	n/a	23	37	142

Hydrogen Storage

 $LaNi_5 \leftrightarrow LaNi_5$

LaNi₅H₇

High gravimetric density

 The challenge of the light periodic table

Low decomposition temperature
 Thermodynamic control

- Reversibility
 - Electronic and ionic mobility

Controlling Gravimetric and Volumetric Densities

High-capacity hydrogen storage in lithium and sodium amidoboranes

ZHITAO XIONG¹, CHAW KEONG YONG¹, GUOTAO WU¹, PING CHEN^{1,2}*, WENDY SHAW³, ABHI KARKAMKAR³, THOMAS AUTREY³, MARTIN OWEN JONES⁴, SIMON R. JOHNSON⁴, PETER P. EDWARDS⁴ AND WILLIAM I. F. DAVID⁵

¹Department of Physics, National University of Singapore, Singapore 117542, Singapore ²Department of Chemistry, National University of Singapore, Singapore 117542, Singapore ³Pacific Northwest National Laboratories, Richland, Washington 99352, USA ⁴Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR, UK ⁵ISIS Facility, Rutherford Appleton Laboratory, Chilton OX11 0QX, UK *e-mail: phychenp@nus.edu.sg

The Perfect Store for Hydrogen Not Yet Discovered

Only a few elements can make suitable lightweight storage materials

Li B C N Na Mg Al P Si

Make tens of thousands of new materials from combinations of these elements

Robotic Synthesis

Industrial Partners

Together will aim to discover <u>new</u> materials with > 6wt% hydrogen storage Rapidly identify and test these new materials

Rutherford Appleton Laboratory

R79 – rapid throughput

robotic synthesis ~30mg quantities

Hydrogen Economy

G. Marbán and T. Valdés-Solís, International Journal of Hydrogen Energy, 2007, 32, 1625-1637

Outlook: The Step-Change Hydrogen Economy

George Crabtree, UK-US Vision for Hydrogen Technology, October 11-12, 2004

Transition from today's technologies to future hydrogen-powered fuel cell vehicles

Reduced vehicle emissions

R.Helmolt, U.Eberle (General Motors), J. Power Sources, 2007, 165, p.833

Energy Materials: Meeting the Challenge

Acknowledgements

Bill David Martin Owen Jones Vladimir Kuznetsov STFC Oxford Oxford